Helsinki University of Technology

T-79.300 Postgraduate Course in Theoretical Computer Science

Secure Message Transmission (SMT) in Mobile Ad hoc Networks

Hafeth Hourani

hafeth.hourani@nokia.com

Spring 2004

Outline

- Overview
- Overview of SMT
- SMT in Detail
- SMT Evaluation
- Conclusions

This presentation is based on "Secure Message Transmission in Mobile Ad hoc Networks", by Panagiotis Papadimitraros, Zyhmunt H. Hass

Outline

Overview

- Overview of SMT
- SMT in Detail
- SMT Evaluation
- Conclusions

MANET Security

- Security is significant challenge in Ad hoc networking
- MANET is an open collaborative environment
- Any node can maliciously or selfishly disturb and deny communication of other nodes
 - Every node in the network is required to assist the in the network establishment, maintenance and and work operation
- Traditional security mechanisms are inapplicable
 - No administrative boundaries for classification of a subnet or nodes as trusted
 - No monitoring of node's transactions with rest of the network (difficult to implement)

MANET Vulnerabilities

- The communication in MANET comprises to phases:
 - > Route Discovery
 - > Data Transmission
- Both phases are vulnerable to attacks
 - > Adversaries can disrupt the route discovery phase
 - By obstructing the propagation of legitimate route control traffic
 - By adversely influencing the topological knowledge of benign nodes
 - Impersonating the destination, responding with corrupted routing information, by disseminating forged control traffic, etc.
 - > Adversaries can disturb the data transmission phase
 - Incur significant data loss
 - By tampering with fraudulently redirecting, dropping data traffic, etc.

Safeguarding MANET

- To provide comprehensive security, both phases of MANET communication must be safeguarded
- Authenticating all control and data traffic will provide security to the MANET
 - Nodes must establish the necessary trust relationships with each and every peer they transiently associated with
 - Not feasible !
- Safeguarding Route Discovery
 > SRP
- Safeguarding Data Transmission
 - > SMT

Outline

Overview

Overview of SMT

- SMT in Detail
- SMT Evaluation
- Conclusions

What is SMT

- Secure Message Transmission (SMT) is a protocol that allows tolerating rather than detecting and isolating malicious nodes
- SMT protocol is introduced to safeguard the data transmission against arbitrary malicious behavior of the network nodes
- SMT is a lightweight and operates solely in an end-toend manner

Why SMT

- SMT safeguard pair-wise communication across unknown frequently changing network in the presence of adversaries
- The goal of SMT is promptly detect and tolerate compromised transmissions

SMT Requirements

- SMT requires a security association (AS) only between the two end communicating nodes, i.e., the source and destination only
 - > Both source and destination should establish a trust relationship (using public key for example)
- Active Path Set (APS)
 - > A set of diverse disjoint paths between the two end nodes
 - > These paths must be valid for some particular time
- This APS is a result of route discovery protocol
 - > APS is maintained by the source

SMT Basic Approach

- SMT combines four elements
 - > End-to-end secure and robust feedback mechanism
 - > Dispersion of the transmitted data
 - Simultaneous usage of multiple paths
 - > Adaptation to the network changing topology

SMT in Action

Secure Message Transmission in Mobile Ad hoc Networks 14.03.2004

Outline

- Overview
- Overview of SMT

SMT in Detail

- SMT Evaluation
- Conclusions

SMT Operations

- Determination of the APS
- Message dispersion and transmission
- ASP adaptation
- Protocol autoconfiguration

Determination of APS

- SMT can operate with any underlying secure routing protocol
 - SMT is independent of the route discovery protocol
 It can work with both proactive and reactive protocols
- Every time the route discovery protocol is executed, the source constructs an APS of k node-disjoint paths
- The source should have a node connectivity view of the network

Message Dispersion and Transmission

- The message dispersion is based on Rabin's algorithm
 It adds limited redundancy to the data
- The message and redundancy are divided into a number of pieces
 - A partial reception of can lead to a successful message reconstruction
- The dispersion allows the successful reconstruction of the original message if M out of N transmitted pieces are received successfully
- Redundancy factor r = N / M

APS Adaptation

- The source updates the rating of each path in its APS based on the feedback provided by the destination
- Each path is associated with two ratings:
 - > Short-term rating r_s
 - Φ Decreased by α each time a failed transmission is reported
 - Φ Increased by β for each successful reception
 - If r_s drops below a threshold value r_s^{thr} , the path is discarded
 - > Long-term rating r_l
 - Function of successfully received (and acknowledged) pieces over the total number of pieces transmitted across the route
 - If r_l drops below a threshold value r_l^{thr} , the path is discarded

Protocol Autoconfiguration

- The protocol adaptation to highly adverse environment can be viewed by
 - > *K*: the number of utilized APS paths
 - k: the maximum number of disjoint paths from between the source and the destination
 - > *r*: the redundancy factor of information dispersal
 - > *x*: the number of malicious nodes
- The larger x is, the larger K should be for fixed r
 - > The condition for successful reception: $x \leq [K \times (1-r^{-1})]$

Outline

- Overview
- Overview of SMT
- SMT in Detail

SMT Evaluation

Conclusions

Simulation Setup

Simulation parameters:

- Network coverage area: 1000 m × 1000 m
- Mobile nodes: 50
- Node coverage area: 300 m
- Simulation time: 300 sec
- Network topology: for any two nodes, it is highly likely that two nodedisjoint paths exist
- Mobility model: random waypoint
 - Speed: 1 to 20 m/sec, Pause time (PT) = 0, 20, 50 and 100 sec
- ✤ Number of adversaries nodes: 0, 5, 10, 25, 20 and 25
 - Attackers discard all data packets forwarded across routes they belong to
- Simulation runs: 15 runs
- OPNET was used for the simulation

Evaluated Protocols

- For comparison purposes, three protocols were evaluated:
 - > Non-secure single-path (NSP) data forwarding protocol
 - No data retransmission
 - > Secure single path (SSP) transmission protocol
 - No message dispersion
 - > SMT protocol
- The route discovery was assumed secure
- SMT protocol parameters

>
$$r_s^{thr} = 0.0, r_s^{max} = 1.0$$

- > $\alpha = 0.33, \beta = 0.033$
- > Transmission retry = 3 times

Results: Message Delivery

Comments

- SMT and SSP performance was almost the same
 > 99% message delivery within a range of 5 to 15 adversaries
 > More than 95% delivery when 50% of nodes are malice
- NSP experienced sharp degradation in message delivery
- The improvement of SMT over NSP ~ 14% to 83%

Results: Packets Dropped by Attackers

24

Comments

NSP experienced substantial packet loss

> Even for small number of adversaries

 $\ensuremath{\oplus}$ Packet lost $\sim 17\%$ when 10% of nodes are malice

In case of SMT and SSP, the effect of adversaries is much less

> SMT

 $\Phi \sim 10\%$ of packets are dropped when 30% of nodes are malice

- $\Phi \sim 20\%$ of packets are dropped when 40% of nodes are malice
- > SSP

 $\Phi \sim 6\%$ of packets are dropped when 30% of nodes are malice

 $\Phi \sim 11\%$ of packets are dropped when 40% of nodes are malice

Comments: SMT vs. SSP

- SSP has shown better performance regarding the percentage of dropped packets by attackers
- Explanation

 - The higher the number of paths, the more likely it is subjected to adversaries

Results: End-to-End Delay

Comments

- SMT vs. SSP
 - > SMT achieves less end-to-end delay
 - Due to the simultaneous usage of multiple routes by SMT
 - > SMT provides lower variability of the end-to-end delay
- SMT is more capable of supporting real-time traffic

Results: Transmission Overhead

Comments

SMT introduces more overhead compared with SSP
 > Additional SMT overhead: ~6% to ~52% higher than SSP

Outline

- Overview
- Overview of SMT
- SMT in Detail
- SMT Evaluation

Conclusions

Conclusions

- SMT can counter any attack pattern either persistent or intermittent, by promptly detecting non-operational or compromised routes
- SMT takes a full advantage of MANET's route multiplicity
- SMT does not require any prior knowledge about the network trust model
 - > Based on end-to-end security association
- SMT deliver 83% more data packets than NSP
- SMT can support QoS for real-time communications due to the low end-to-end delay

Critique

- In general, I don't see that SMT is something special !
- The performance evaluation does not show that SMT is superior to other security protocols such as SSP
- SMT assumes the availability of node-disjoint paths ...
 > Racal x ≤ [K × (1-r⁻¹)]
 - If we have $r = \frac{3}{4}$, and 10 different disjoint paths (K=10),
 - ♦ The x ≤ $[10 \times (1-\frac{3}{4})] = 3$
 - \bullet **>** To tolerate 3 adversaries, you need to have 10 disjoint routes
- SMT introduces a significant overhead

> Scarifies a lot of bandwidth for the sake some security

References

Panagiotis Papadimitratos, Zygmunt J. Hass, "Secure Message Transmission in Mobile Ad hoc networks"

Thank You!

Secure Message Transmission in Mobile Ad hoc Networks 14.03.2004 hafeth house administration